Introduction to Image Processing

Jacqueline Le Moigne NASA GSFC

What is "Image Processing"?

• (Definition from Wikipedia) "Image Processing is any form of information processing for which the input is an image, such as photographs or frames of video; the output of image processing can be either an image or a set of characteristics or parameters related to the image. Most image-processing techniques involve treating the image as a two-dimensional signal and applying standard signal processing techniques to it."

Applications of Image Processing

- Medical Applications (e.g., Cancer Detection, Remote and Assisted Surgery)
- Security Applications (e.g., Face and Fingerprints Recognition)
- Commercial Applications (e.g., Video and Photograph Enhancement)
- Industrial Applications (e.g., Assembly Line Manipulation, Visual Inspection)
- Military Applications (e.g., Missile Guidance)
- Space Applications (e.g., Remote Sensing, Space Robotics)

Multi-Disciplinary Field **Mathematics Physics** Probabilities and Statistics **Optics** Scientific Computing **Imaging Sensors** Geometry

Image Processing

and

Computer Vision

Engineering

Algebra

Signal Processing

Automatic Control

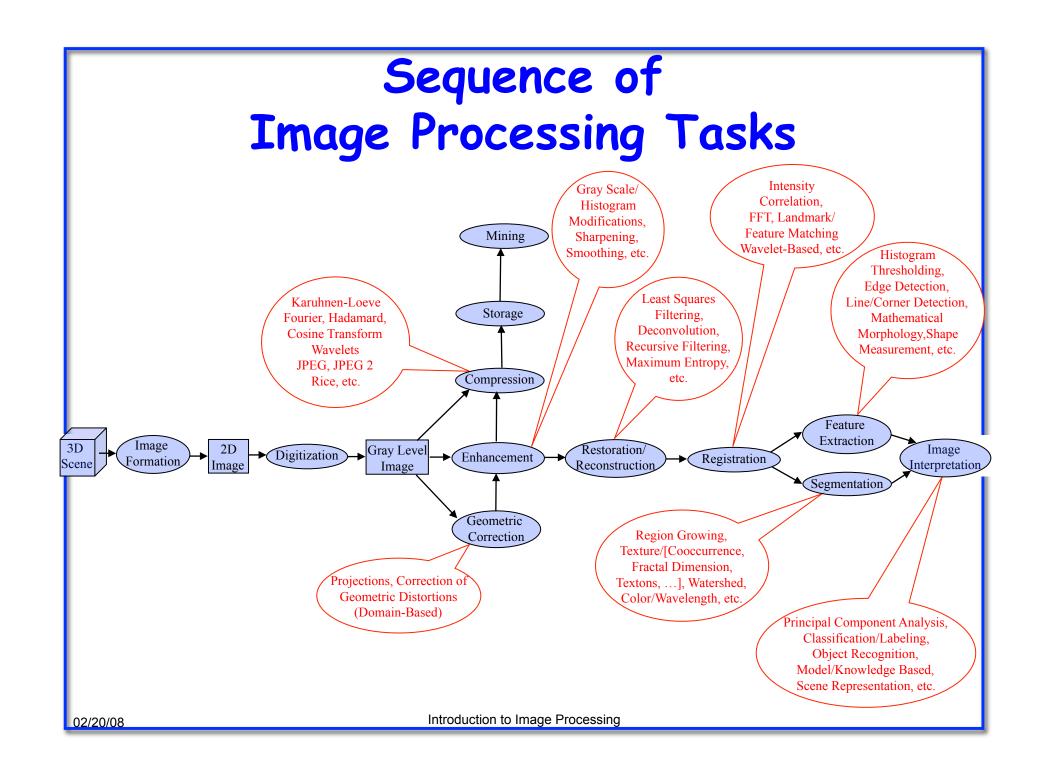
Robotics

Computer Science

Data (HP) Processing

Storage, Archiving, Mining

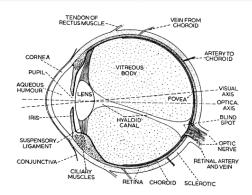
Artificial Intelligence


Neurobiology

Biological Vision

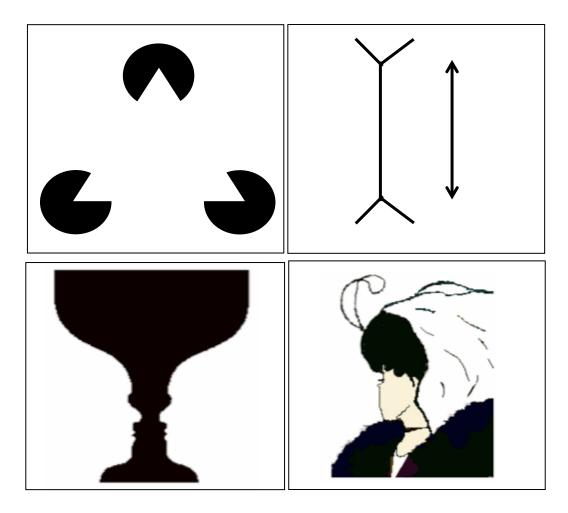
Psychology

Introduction to Image Processing


02/20/08

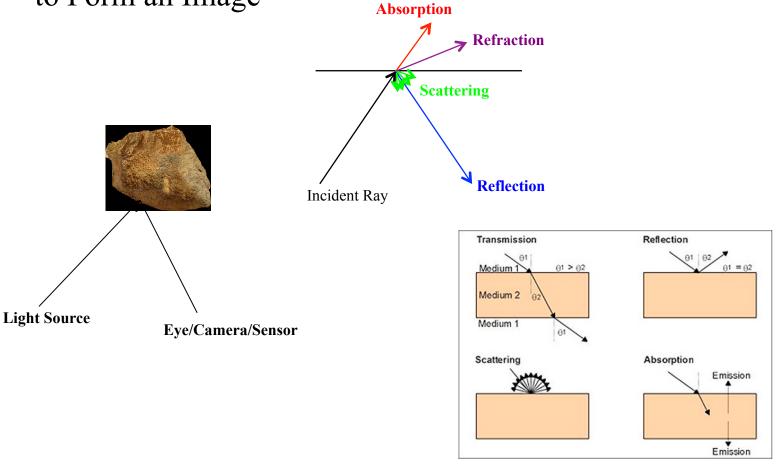
Biological Vision

- Visual functions Integrated by Brain:
 - ➤ Field of View, Focusing Ability, Depth Perception, Motion Perception, Color Perception


- Different Kinds of Vision/ "See" and "Understand" in Different Ways
 - Human Vision
 - o Image Formed on the Retina/ photoreceptors (or rods and cones), produce electrical transmitted to brain via optic nerve.
 - o 3 kinds of color receptors blue, greenwish-yellow and red
 - o Position of eyes determines degree of peripheral vision; Visual field of 200°; Stereo vision => depth
 - Animal Vision:
 - » Dogs:
 - o 2 kinds of color receptors yellow and greenish-blue
 - o Visual field of 240° but central binocular field of view ≈1/2 human's
 - o Optimal dilation of pupil (≈ camera's aperture) + reflective layer under retina => Enhanced night vision
 - o Lower details sensing (no fovea); Greater sensitivity to motion

» Snakes:

- o Do not see color
- o Combination of light receptors: rods => low-light fuzzy vision & cones => clear images
- o Underground snakes: smaller eyes/light and dark; above ground: very clear vision and good depth perception. Some species (e.g., boas and pythons): pit organs similar to IR goggles.
- » Insects:
 - o "Compound eyes: Bees' eyes made up of 1000's of lenses, dragon flies 30,000's
 - o Wide field of view, and better motion perception


Biological Vision

• Optical Illusions, Illumination, A-priori Knowledge, Domain-Dependent

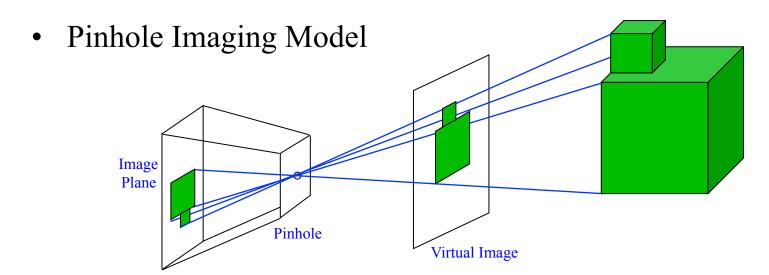


Image Formation - Physics

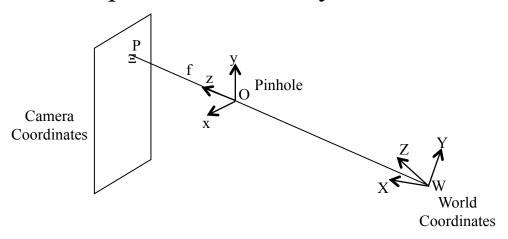
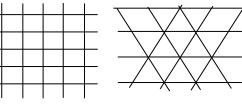

 Vision uses Light Reflected from the Surrounding World to Form an Image

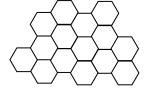
Image Formation - Optics

• Perspective Geometry

If
$$W = (X,Y,Z)$$
 and $P = (x,y,f)$

$$\overrightarrow{OW} = \alpha. \overrightarrow{OP} \quad \text{so} \quad \begin{cases} X = \alpha x \\ Y = \alpha y \\ Z = \alpha f \end{cases}$$

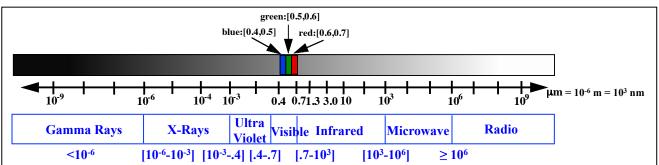

Therefore


$$\begin{cases} x = f \cdot X/Z \\ y = f \cdot Y/Z \end{cases}$$

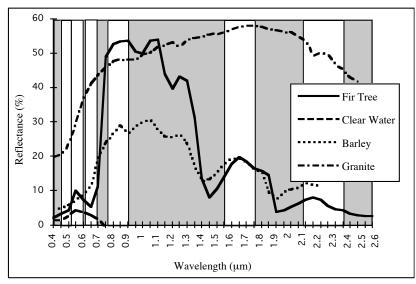
(with f is the focal length of the camera)

Digital Images

- Mathematical Model: Representation of an Image as a Discrete (Intensity) Function of Spatial Samples
 - I: (x,y) ----> I(x,y) = Gray Level at Pixel (x,y)
 - Gray Levels = Discrete Values Taken by Intensity Function
- Pixel ("Picture Element") = Image Representation of a Basic Volume Element in the World
 - Tesselation: Pixel Organization


Rectangular

Triangular


Hexagonal

- Spatial Resolution = Represents Interval Sampling of 2D/3D Space
- Spectral Resolution = Represents Interval Sampling of Electromagnetic Spectrum
- Radiometric Resolution = Refers to the Number of Digital (Gray) Levels Used to Represent the Data

Remote Sensing Imaging

Electromagnetic Spectrum

Examples of Spectral Response Patterns for 4 Different Types of Features - Fir Tree, Clear Water, Barley, Granite - White Areas Show the Portions of the Spectrum Corresponding to the 7 Channels of Landsat-Thematic Mapper (TM)

Signal to Noise at Wavelength λ :

$$(\mathbf{S} / \mathbf{N})_{\lambda} = \mathbf{D}_{\lambda} \beta^2 (\mathbf{H}/\mathbf{V})^{1/2} \Delta_{\lambda} \mathbf{L}_{\lambda}$$

Where

 D_{λ} : detectivity (measures detector performance quality)

β: instantaneous field of view H: flying height of the spacecraft

V: velocity of the spacecraft

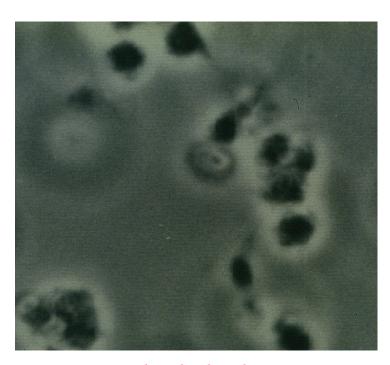
 Δ_{λ} : spectral bandwidth of the channel (spectral resolution)

 L_{λ} : spectral radiance of ground feature

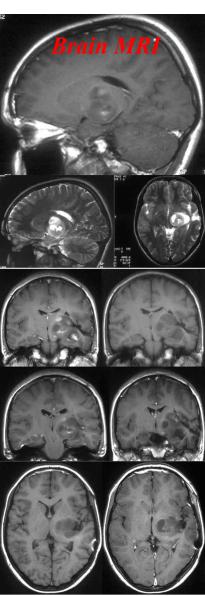
=> Tradeoff between spatial and spectral resolutions, e.g.: *To maintain the same SNR while improving spatial resolution by* a factor of 4 (i.e., decreasing β by a factor of 2), we must degrade the spectral resolution by a factor of 4 (i.e., increase Δ_l by a factor of 4)

Remote Sensing Imaging (2)

	1 1 1	0.5 0	.6 0	.7 1	.0 1.:	3	2.0	3.0 4	.0 5	5.0 6. 	.0 7.	0 8	.0 9	0.0 1	0.0	1,1	.0	12.0	13.0	14.0	0 15.0
Instrument Number of (Spat. Resol.) Channels	Ultra Violet	Visible		Nea	ar-IR	М	id-IR						The	rmal-	IR						
AVHRR (D) 5 Channels (1.1 km)			1	2				3								4	Т	5			
TRMM/VIRS 5 Channels (2 km)			1			2		3			I					4		5			
Landsat4-MSS 4 Channels (80 m)		1	2	3 4																	
Landsat5&7-TM&ETM+ (30 m) 7 Channels	-	1 2	3	4	•	5	7										6				
Landsat7-Panchromatic (15m)			1																		
IRS-1 4 Channels LISS-I (73m) - LISS-2 (36.5m)		1 2	3	4																	
JERS-1 8 Channels (Ch1-4:18m; Ch5-8:24m)		1	2	3 & 4		5	6 7 8														
SPOT-HRV Panchromatic (10m) 1 Channel			1				1111		ı		1		I							1	
Spot-HRV Multispectral (20 m) 3 Channels MODIS 36 Channels (Ch1-2:250 m;3-7:500m;8-36:1km)	3 8-1	, 11, 10 11, 4, 12	1, 13,	3 2, 16-	5	26 6	7	20-	25		27	28	29	30		3 1		32	T	33-36	I
EO/1 ALI-MultiSpectr. 9 Channels (30m	11		3	4	5'	5	7									Ч-			_		
ALI-Panchrom. 1 Channel (10m) Hyperion 220 Channels		1		1	to 220																
(30m) LAC 256 Channels (250m)					1 to 2	256															
IKONOS-Panchromatic (1m) 1 Channel		1 2	1 3	4							'										
IKONOS-MS		1	2	3		4	5 - 9	1					10,11	12	1	13,1	4				
CZCS 6 Channels (1 km)	1	2 3	4	5							1			1							
SeaWiFS (D) 8 Channels (1.1 km)	1 2	2 3 4 5	6	7 8																	
TOVS-HIRS2 (D) 20 Channels (15 km)			2	20				19	17 to 1 3		12	11	10	9			В			7 to	1
GOES 5 Channels (1 km:1, 4km:2,4&5, 8km:3)			1		-			2		-	3				Τ	4		5			
METEOSAT 3 Channels (V:2.5km,WV&IR:5km)			Visit	ole				'			Vater /apor						IR				
	 		_	1	l		1	'													

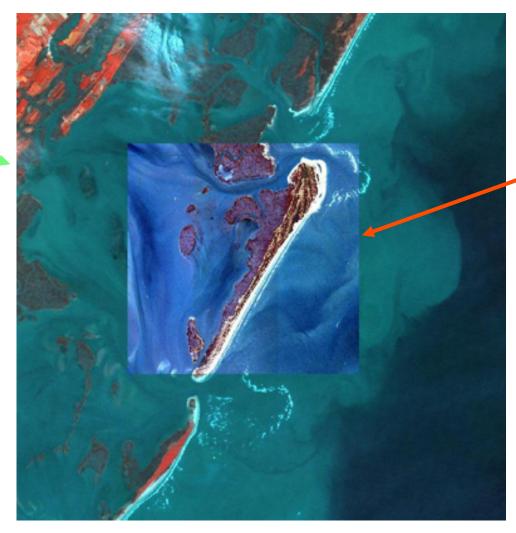

Imaging Examples - Photographs

Introduction to Image Processing



02/20/08

Imaging Examples - Medical

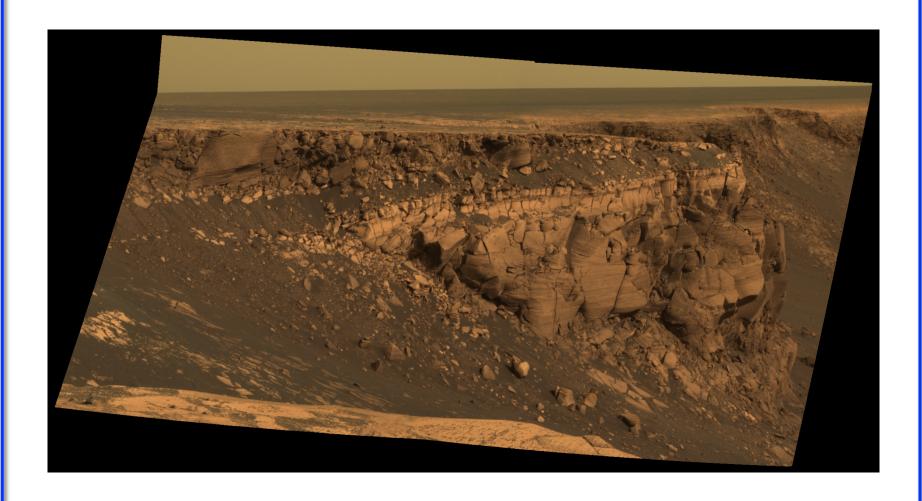

Blood Platelets

Earth Science Imaging

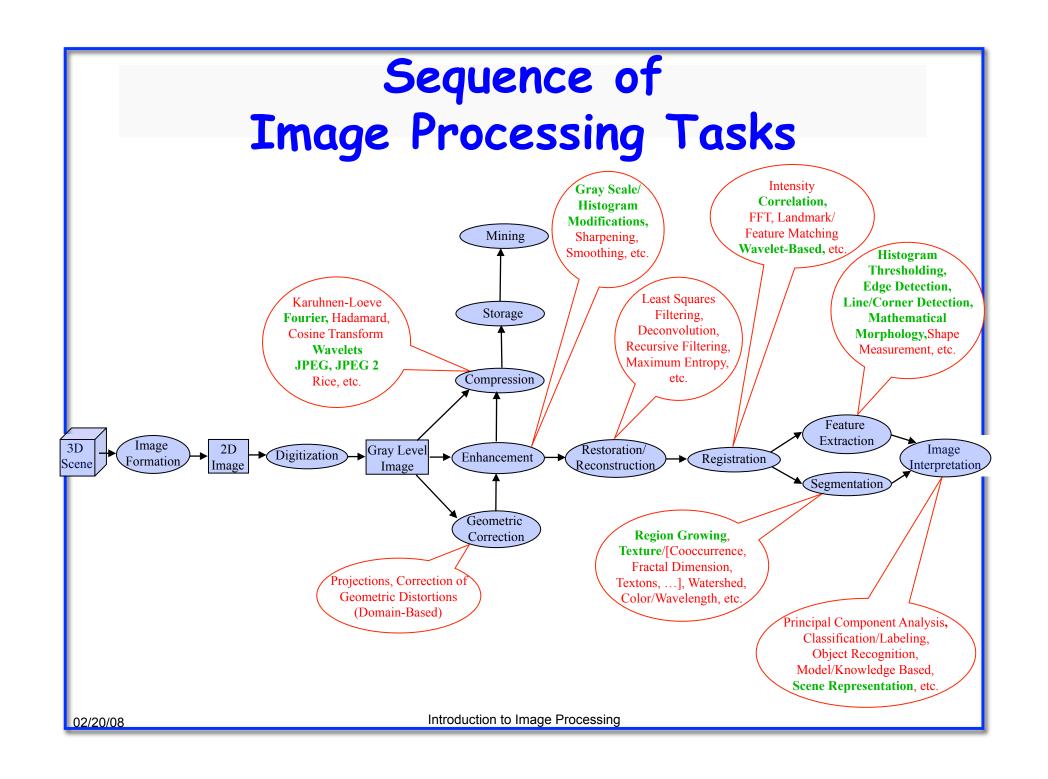
ETM/IKONOS Mosaic of Coastal VA Data

IKONOS

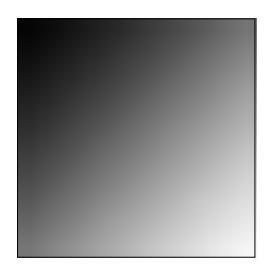
Introduction to Image Processing


02/20/08

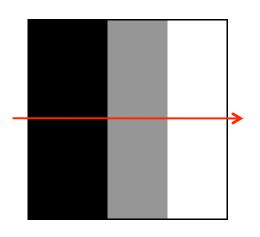
ETM+

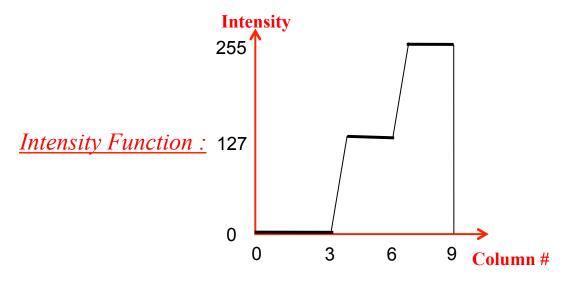

Hubble Space Telescope Imaging (Barred Spiral Galaxy NGC1672)

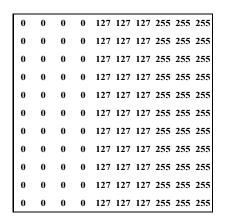
Planetary Imaging



What is Image Processing?


Test Case:


- 10 by 10 pixels Image
- 256 gray levels
- Image = 10 x 10 Matrix Made up of Numbers in Range [0-255]



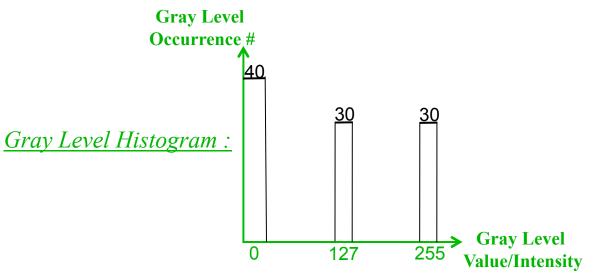

0					64				127
				64				127	
			64				127		
		64				127			
	64				127				
64				127					191
			127					191	
		127					191		
	127					191			
127					191				255

Image Processing Basics

Introduction to Image Processing

02/20/08

Image Convolution

- Many Image Processing Operations are "Local"
 - o Smoothing, Edge Detection, Slope Computation, Wavelet Transforms, etc.
 - o Parallel Computations
- Pixel Neighborhood, N

	1	
2	Center Pixel	4
	3	

1	2	3
8	Center Pixel	4
7	6	5

4 Neighbors

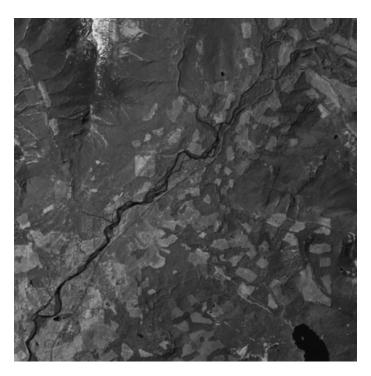
8 Neighbors

3 Ξ 3 Neighborhood

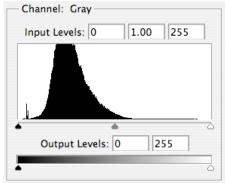
1	2	3	4	5
6	7	8	9	10
11	12	Center Pixel	13	14
15	16	17	18	19
20	21	22	23	24
				_

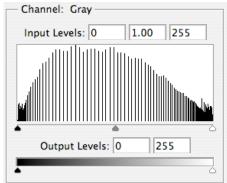
5 ≡ 5 Neighborhood

- Image Convolution
 - Convolution of Image I with Filter h at Pixel (x,y) is defined by:

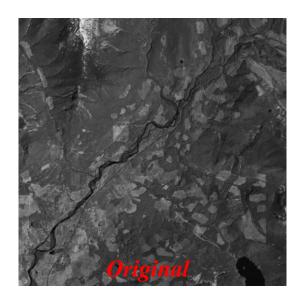

$$I * h (x,y) = \sum_{(u,v) \text{ in } N} I(u,v) \cdot h(x-u,y-v)$$

- Theorem / Fourier Transforms (F):


$$F(I_1 * I_2) = F(I_1) \cdot F(I_2)$$



Histogram Equalization



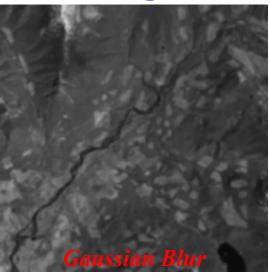
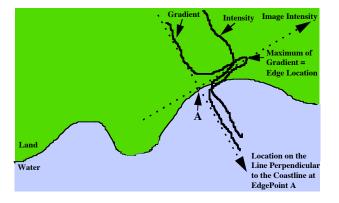
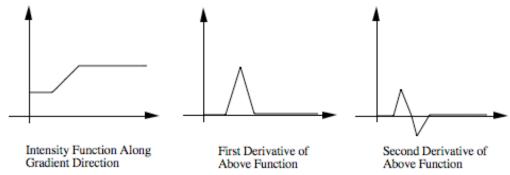




Image Smoothing



(Edge-Preserving Smoothing)



Edge Detection

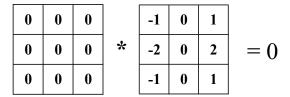
• Find "Jumps in Intensity", i.e. pixels where Gradient is Maximum

- Edge Detection Methods: Compute 1st and 2nd Derivatives
 - o Find Maxima of First Derivative
 - o Find Zeros of Second Derivative

Gradient Operator (1st Derivative)

• Sobel Edge Detector (2 masks):

$$G_{X} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ \hline -1 & 0 & 1 \end{pmatrix} \qquad G_{Y} = \begin{pmatrix} -1 & -2 & -1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \end{pmatrix}$$


- Convolution of Gradient Operators with Image:
 - $\partial I/\partial x (x,y) = Gx * I (x,y) = \sum u \sum v [Gx(u,v) . I(x-u,y-v)]$
 - $\partial I/\partial y (x,y) = Gy * I (x,y) = \sum u \sum v [Gy(u,v) . I(x-u,y-v)]$
- Gradient of image I at Pixel (x,y):
 - Magnitude: $GI(x,y) = \sqrt{((Gx * I(x,y))^2 + (Gy * I(x,y))^2)}$
 - Direction: Arctg(DGI(x,y)) = Gy * I (x,y) / Gx * I (x,y)
- Variants: Prewitt (1 instead of 2), Roberts (2x2 neighborhood)
- Operators non Isotropic
 - o Isotropic Edge Detection with 1, 4 or 8 Masks, e.g., Laplacian:

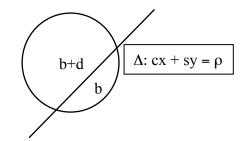
$$L = \begin{pmatrix} 1 & 1 & 1 \\ \hline 1 & -8 & 1 \\ \hline 1 & 1 & 1 \end{pmatrix}$$

Example Gradient Computations

<u>o</u> 1	01	101	q 0	1217	127	127	255	255	255
Ω2	02	202	Q 0	127	127	127	255	255	255
0 1	01	101	q 0	127	127	127	255	255	255
0	0	0	0	127	127	127	255	255	255
0	0	0	0	127	127	127	255	255	255
0	0	0	0	127	127	127	255	255	255
0	0	0	0	127	127	127	255	255	255
0	0	0	0	127	127	127	255	255	255
0	0	0	0	127	127	127	255	255	255
0	0	0	0	127	127	127	255	255	255
0	0	0	0	127	127	127	255	255	255

Gradient Magnitude:

0	0	127		-1	0	1	
0	0	127	*	-2	0	2	= 508
0	0	127		-1	0	1	


Gradient Direction:

- Gx=508; Gy=0
- Arctg(Gy/Gx) = Arctg(0) = 0
 Normal to Edge => Vertical Edge
- Edge Pixel = Pixel where Gradient Magnitude is Maximum
- Can be determined by Thresholding Gradient Magnitude

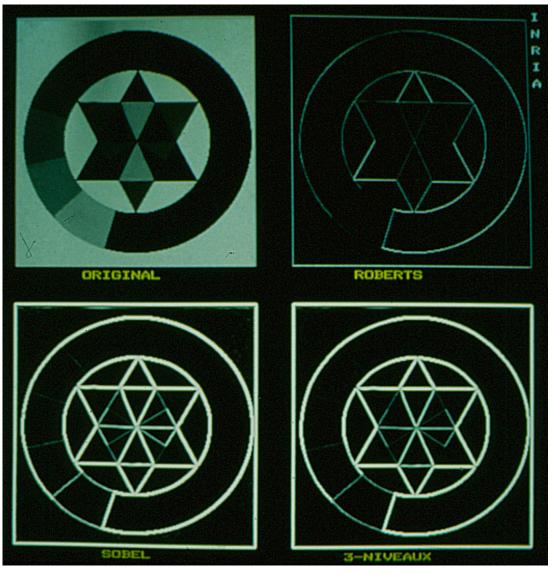
Some Other Edge Detection Methods

Hueckel

- o Approximate Edges with an "Edge Template"
- o $S(x,y,c,s,r,b,d) = \begin{cases} b & \text{if } cx+sy \le \rho \\ b+d & \text{else} \end{cases}$

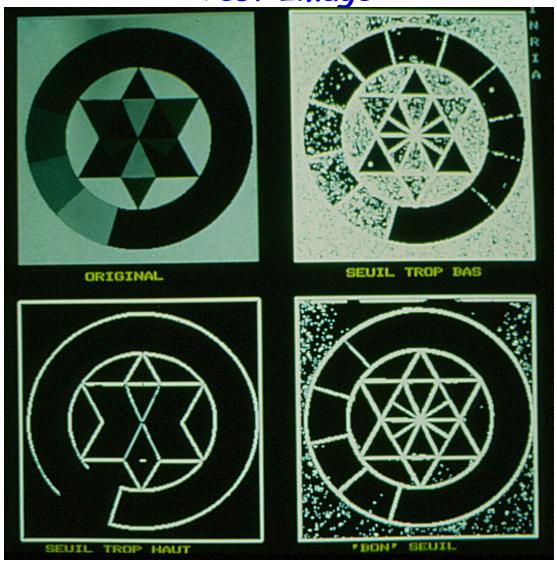
Marr & Hildreth

- o Filter Image by Gaussian Filters of Various Variances (i.e., various frequencies)
- o For each variance σ , find the zero crossings of the derivative of Image I filtered by G_{σ} (or εθu.: convolve I with 2nd derivative of G_{σ} or Laplacian)
- o Laplacian approximated by Difference of 2 Gaussian filters


• Canny Edge Detector

- Designed as an "Optimal Edge Detector" for following 3 criteria:
 - » Good Detection
 - » Good Localization (more Smoothing improves detection but hurts localization)
 - » Single Response per Edge

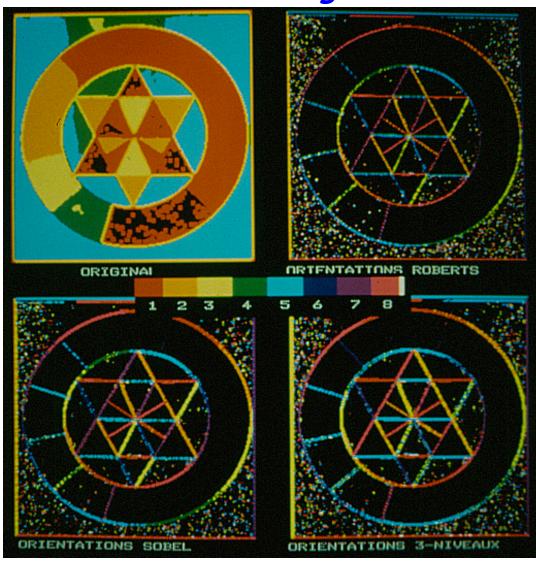
• Steps:


- 1. Gaussian Smoothing (Assumes Gaussian Noise)
- 2. 2D First Derivative Gradient (e.g., Roberts or Sobel)
- 3. Non-Maximal Suppression, i.e. keep Local Maxima in the Direction of the Gradient
- 4. Hysteresis via 2 Thresholds, T_h and T_l ; if $I < T_l =>$ no-edge; if $I > T_h =>$ edge; if $T_l \le I \le T_h =>$ kept as an edge only if there is a path to an edge point Introduction to Image Processing

Edge Detection - Test Image

Gradient Thresholding

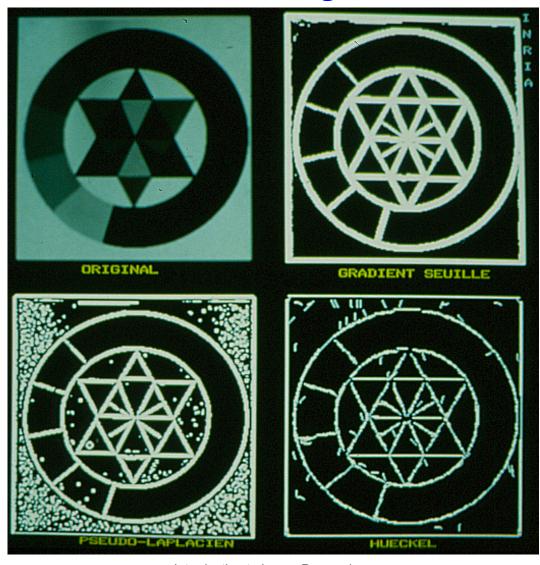
Test Image

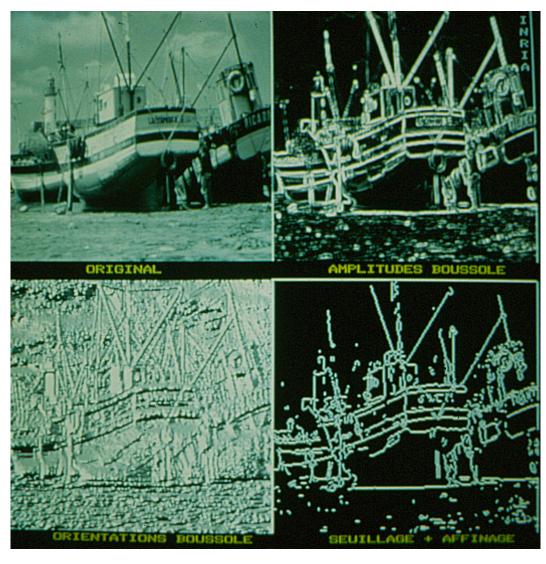


Introduction to Image Processing

02/20/08

Gradient Directions


Test Image


Introduction to Image Processing

02/20/08

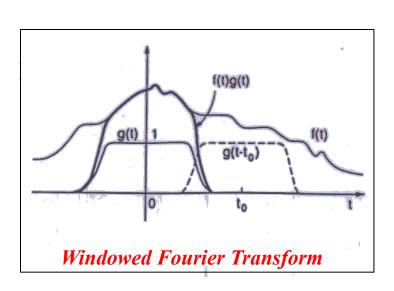
Other Edge Detectors Test Image

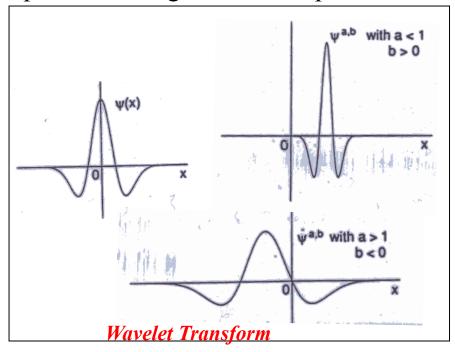
Edge Detection Results Boats

Fourier Analysis

Fourier Transform:

- o Decomposition of an Image in a Weighted Sum of Sinusoid Functions of Different Frequencies
- o $F(I)(x,y) = \iint I(u,v) e^{-\iota 2\Pi(ux+vy)} du dv \Rightarrow Weights$ = $\iint I(u,v) \cos(2\Pi(ux+vy)) du dv + i \iint I(u,v) \sin(2\Pi(ux+vy)) du dv$ = Real(F(I))(x,y) + i Complex(F(I))(x,y){ $Amplitude = (Real)^2 + (Complex)^2$ and Phase = Arctg(Complex/Real)
- o Property: Fourier Transform of a Gaussian is a Gaussian
- No Localization

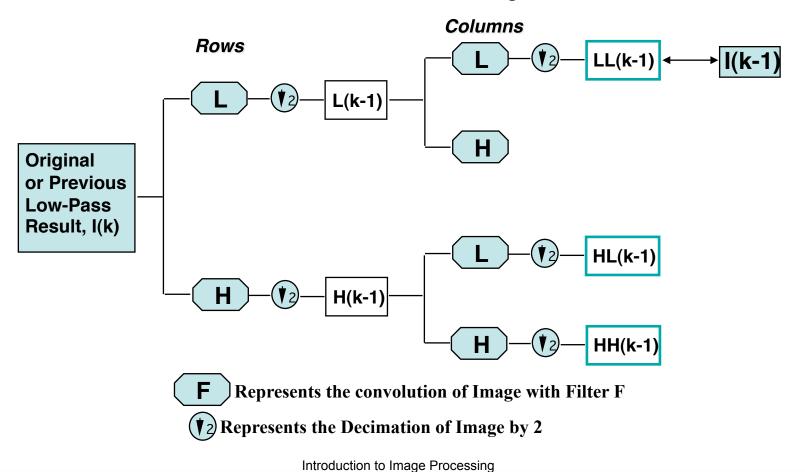

Windowed Fourier Transform:


- WF(I)(x,y,p,q) = \iint I(u,v).G(u-p,v-q) e -ι2Π (ux+vy) du dv
- Gabor Transform when G is a Gaussian function centered at every image point
- Localization but G = Same Envelop for All Frequencies

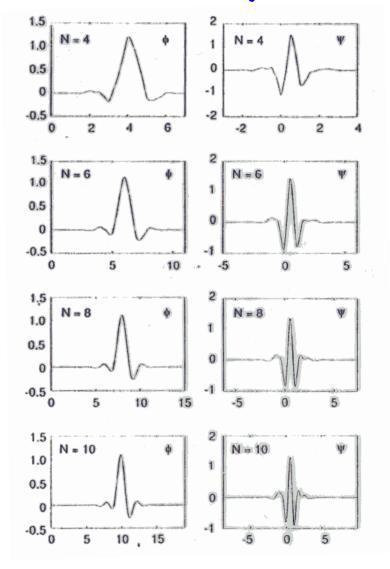
Wavelet Analysis

• Wavelet Transform:

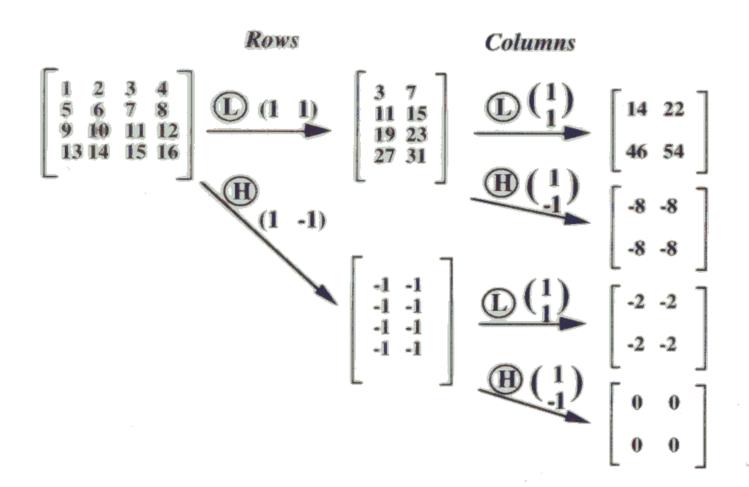
- Wav(I)(a,b) = $1/\sqrt{|a|} \iint I(u,v).W(u-b1,v-b2) du dv$
- W is the "Mother Wavelet"
- Localization (similar to Gabor)
- Better Division of Space(Time)-Frequency Plane : Good for Short-Lived HF Components Superposed on Longer-Lived LF parts

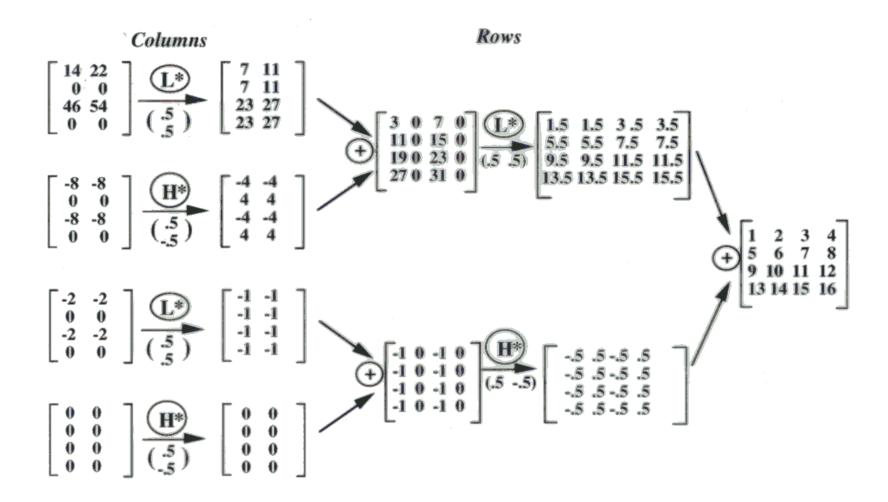


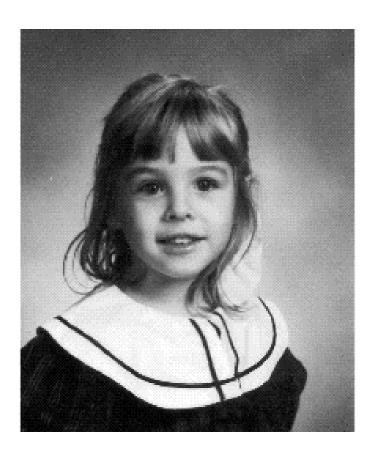
Discrete Wavelets

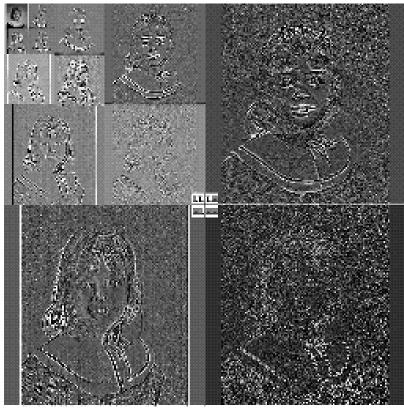

- Orthonormal Basis and Frames
 - Daubechies Wavelets

02/20/08


Mallat: Definition of Wavelets from a Scaling Function


Daubechies Least Asymetric Wavelets


Example of 2D Wavelet Decomposition



Example of 2D Wavelet Reconstruction

Example: Wavelets Transform

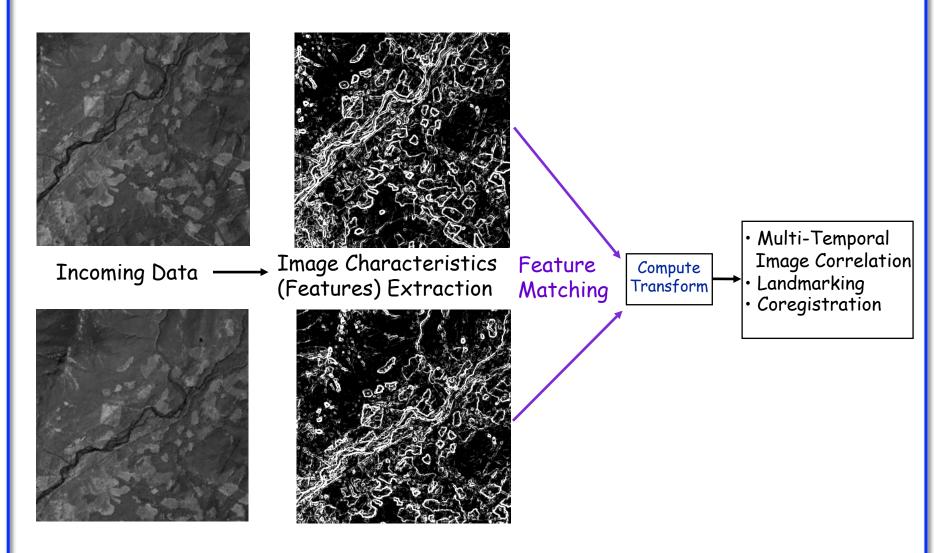
Applications Of Wavelets

- Image Compression
 - Provide a More Compact Representation of an Image
 - Lossy Compression (some visual quality is lost)
 - Lossless Compression
 - JPEG (Joint Photographic Experts Group) and JPEG-2000: Lossy Compression
 - JPEG: Compression based on Discrete Cosine Transform (DCT)
 - JPEG 2000: Compression based on Wavelets
- Image Registration
- Image Segmentation
- Image Fusion

Image Registration

• If I1(x,y) and I2(x,y): images or image/map

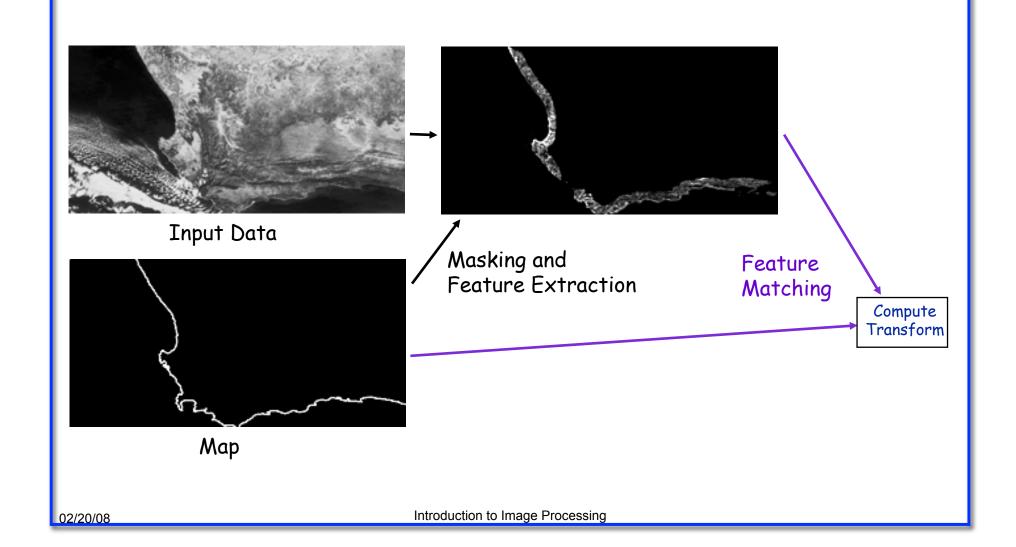
Registration = Find the Mapping (f,g) which Transforms I1 into I2:


I2(x,y) = g(I1(fx(x,y),fy(x,y))

» f: spatial mapping

» g: radiometric mapping

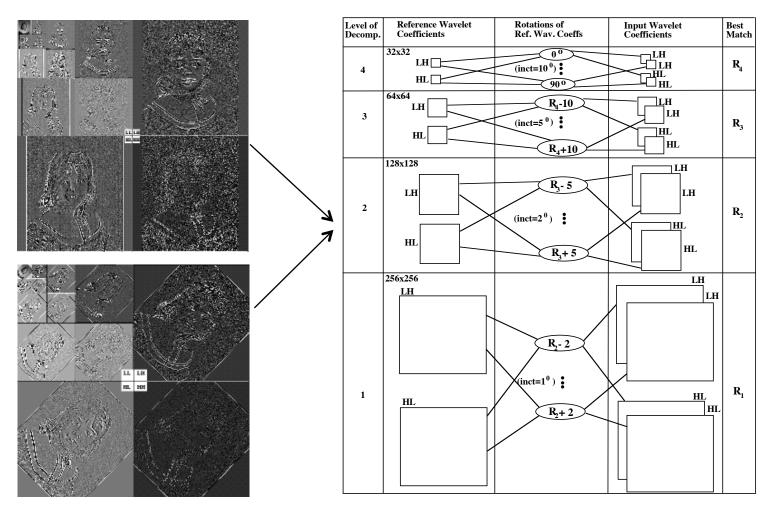
- Remote Sensing:
 - Navigation or Model-Based Systematic Correction
 - Orbital, Attitude, Platform/Sensor Geometric Relationship, Sensor Characteristics, Earth Model, ...
 - Image Registration or Feature-Based Precision Correction
 - Navigation within a Few Pixels Accuracy
 - Image Registration Using Selected Features (or Control Points) to Refine Geo-Location Accuracy


Image to Image Registration Correlation of Edge Features


Introduction to Image Processing

02/20/08

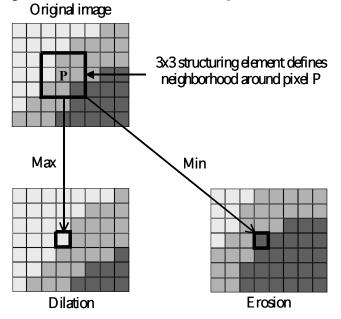
Image to Map Registration Correlation of Edge Features

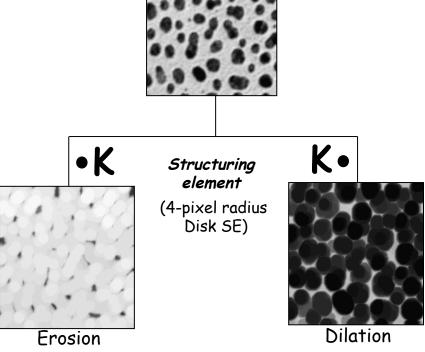

Application of Wavelets to Image Registration

Introduction to Image Processing

02/20/08

Multi-Resolution Wavelet Registration

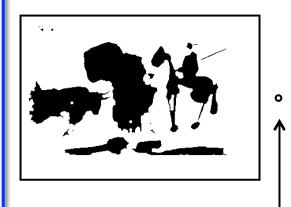


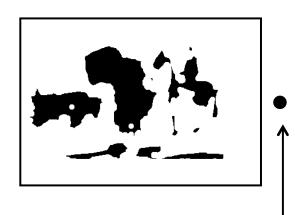

Mathematical Morphology Concept

Mathematical Morphology (MM) Concept:

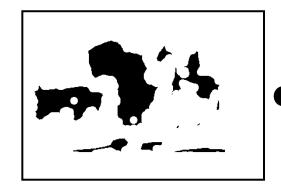
- Nonlinear spatial-based technique that provides a framework.
- · Relies on a partial ordering relation between image pixels.
- In greyscale imagery, such relation is given by the digital value of image pixels

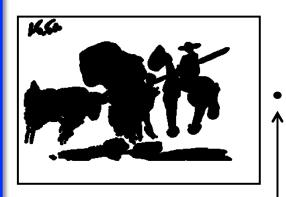
Greyscale MM Basic Operations:

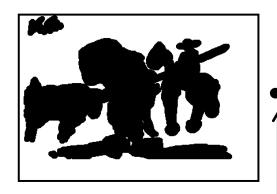



Original image

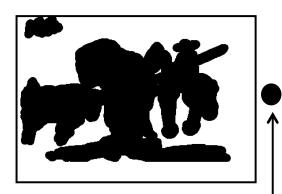
Binary Erosion



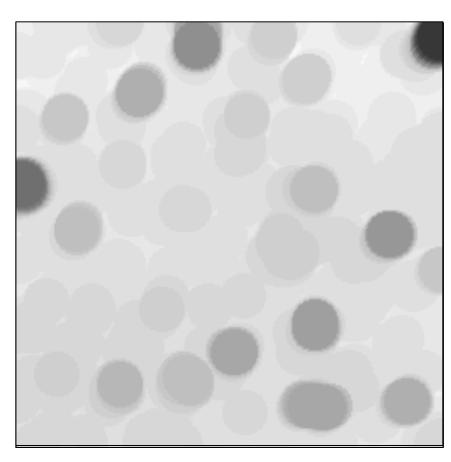

Structuring element

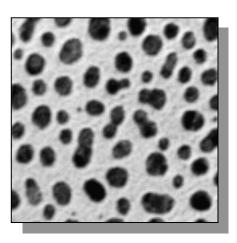

Structuring element

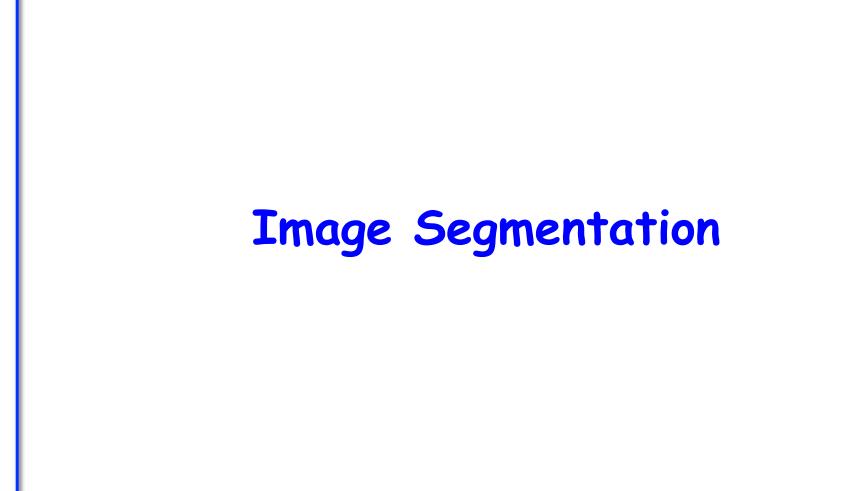
Binary Dilation



Structuring element




Structuring element

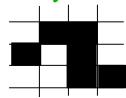

Structuring element

Combined Operations, e.g. Erosion + Dilation = Opening

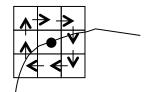
02/20/08

Image Segmentation

- Image or Region Segmentation is the process that generates a spatial description of the image as a set of specific parts, regions or objects.
- Image divided into groups of pixels that are homogenous for a given criterion
 - o Contrast with surroundings: *edge-based segmentation* Examples: **Edge following, line or curve fitting**, etc.
 - o Similar properties, gray level, color, etc. measured by some local statistics such as means, variance, etc.: *region-based segmentation*

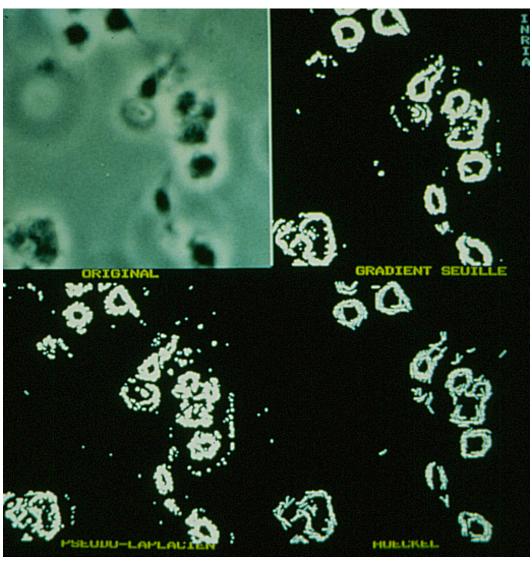

Examples: Region Growing, Region Splitting, Split and Merge, Relaxation, Watershed, etc.

- o Remark: Image Classification = Pixel-Based Method (e.g., Neural Networks)
- Segmented Output => Higher-Level Image Interpretation Process, part of Computer Vision or Image Understanding.


02/20/08

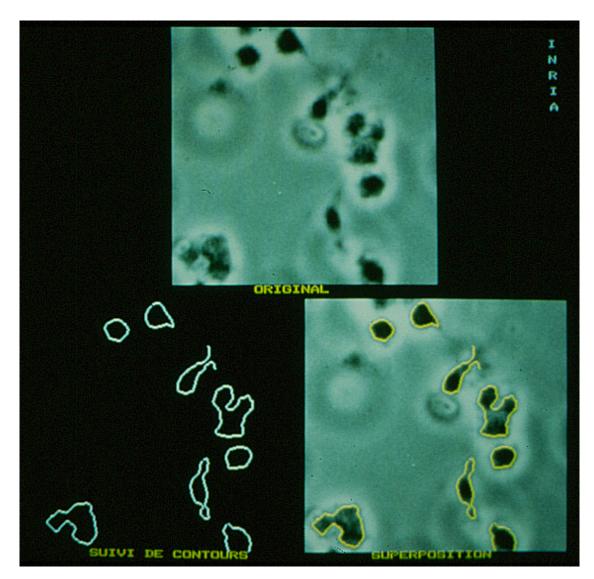
Edge Following

- Prior Processing: Edge Detection and Thresholding =>
 Choose Starting Point above Threshold
- Various Methods for Edge Following, e.g.:
 - Line by Line Edge Following: Label all Contours



Give the Same Label to all Connected Pixels

- Contour Following
 - 1. Starting Point P₀ with Gradient Magnitude above Threshold
 - 2. In Neighborhood (4 or 8 pixels) Centered around P₀, Search in Circular Pattern => 1st point above Threshold and Gradient Direction Compatible with P₀
- Graph Traversal
 - All Pixels whose Magnitude is above Threshold represent the Nodes of a Graph
 - Define a Cost Function Based on Gradient Magnitudes and Orientations
 - Contour Extraction Performed by Finding Path of Optimum Cost

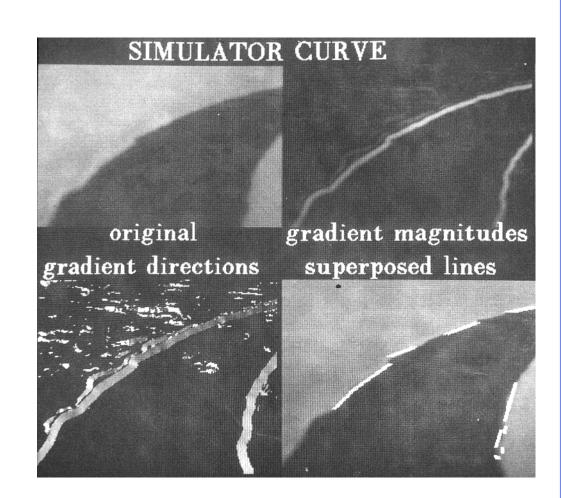

Blood Platelets Extraction

Blood Platelets Extraction

Algorithm:

- 1. Histogram Equalization
- 2. Sobel Edge Detection
- 3. Dilation
- 4. Circular Edge Following

Line and Shape Detection

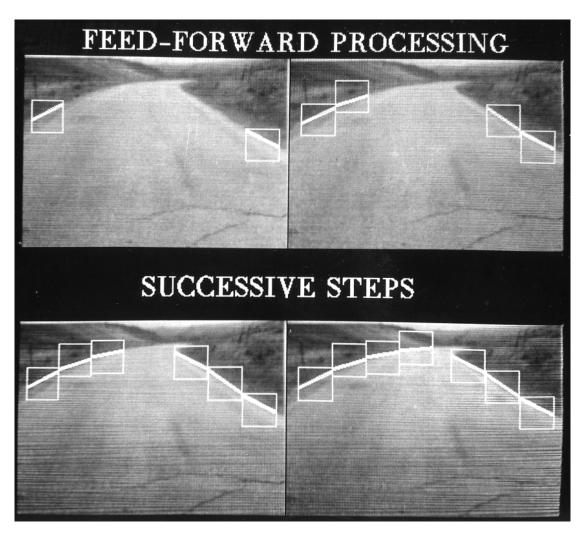

- Build upon Edge Detection results
 - Let us call (G,D) the edge magnitude and direction images of an image I
 - Hough Transform for Line Detection
 - Every line can be represented as: $x\cos\Theta + y\sin\Theta = \rho$
 - Create an Accumulator:
 - For each (x,y) for which G > threshold, compute $\rho = x\cos D + y\sin D$
 - Increment the counter of (ρ,D) in the accumulator
 - The pair (ρ,Θ) corresponding to the maximum counter represents the strongest line in the image
 - Idea: Strong Lines in (x,y) space correspond to Maxima (or Peaks) in (ρ,Θ) space
 - Can be Used to extract other shapes, e.g. ellipses

Line Detection for Road Following

(Autonomous Land Vehicle, ALV)

Bootstrap Algorithm:

- 1. Sobel Edge Detection
- 2. Segment Orientation Histogram
- 3. Create Magnitudes
 Images for each
 "Orientation Region"
- 4. For each "Orientation Image", Compute Hough Transform => Strongest Line
- 5. Label All Lines
 According to World
 Model


Line Detection for Road Following

(Autonomous Land Vehicle, ALV)

Feedforward Algorithm:

Strongest Orientation Known from Bootstrap Step

- 1. Sobel Edge Detection
- 2.Segment Orientation Histogram
- 3.Create Magnitudes Images for Strongest "Orientation Region" from Bootstrap
- 4.For Strongest "Orientation Image", Compute Hough Transform => Strongest Line

Region-Based Segmentation

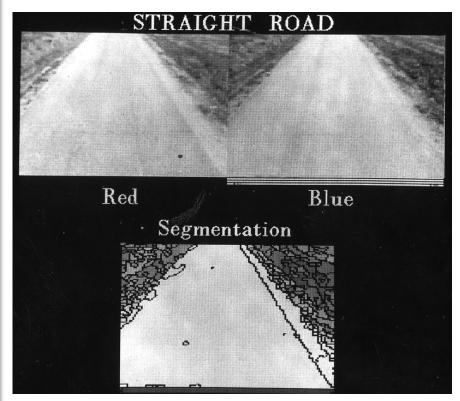
- Methods
 - o Region Growing
 - o Region Splitting
 - o Split and Merge
 - o Relaxation
 - o Watershed Method
 - o Means Cut
 - o etc.
- Parameters
 - o Mean and Variance
 - o Edge Magnitudes
 - o Texture
 - ✓ Cooccurrence Matrix
 - ✓ Textural Edgeness
 - ✓ Filter Banks
 - ✓ Local Spatial Frequency Analysis, Gabor Filters and Wavelets
 - ✓ Mathematical Morphology
 - o etc.

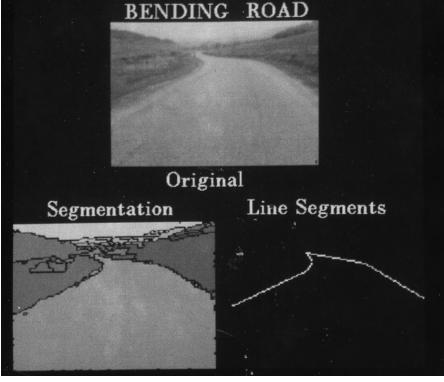
What is Texture?

- (Rosenfeld and Kak) "Visual Textures are complex visual patterns composed of entities, or subpatterns (textons), that have characteristic brightnesses, color, slopes, sizes, etc. Thus a texture can be regarded as a similarity grouping."
- (Duraiswami) "Texture is something that repeats with variation".
- Some Texture Measures:
 - Co-occurrence Matrix: Statistics Computed from Distribution of Gray Levels across the Image at Different Orientations
 - "Filter Banks": Filtering Image with
 Various Linear Filters Corresponding to
 Multiple Patterns at Various Scales, e.g.
 Weighted of Gaussians at Different Scales
 - Gabor or Wavelets Filters, Steerable
 Pyramid (Simoncelli): Provide Local Spatial
 Frequency Analysis

http://www.ux.uis.no/~tranden/brodatz.html

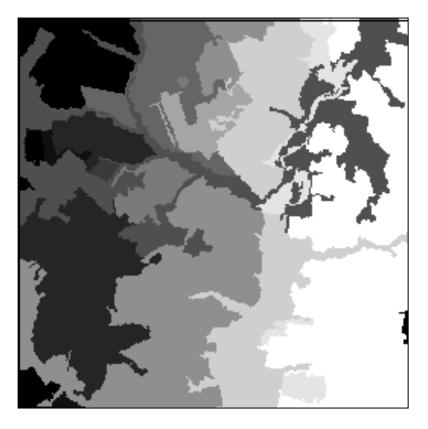
Region-Based Segmentation

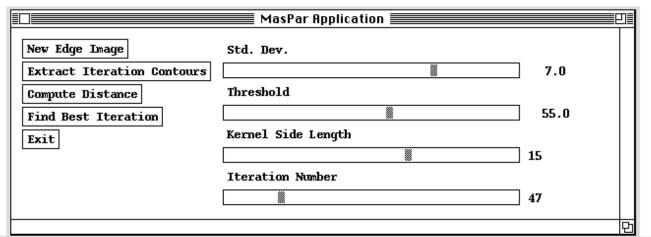

• Iterative Region Growing

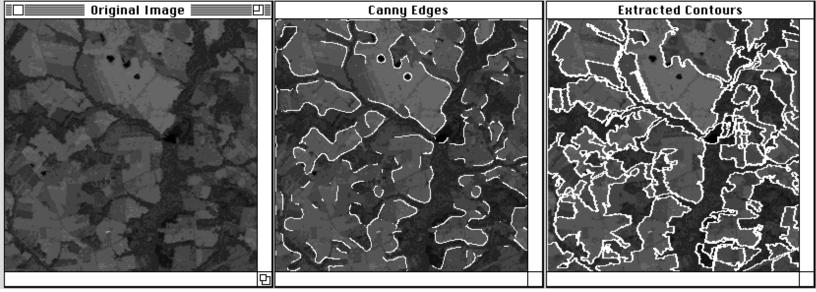

- o First Iteration: Each pixel represents an individual region
- o Next Iteration: Regions are merged if the criterion for merging is satisfied (e.g., the variance of the pixel intensities in the merged region is below a given threshold)
 - Merged regions can be adjacent or not
 - One or several merges can happen at each iteration
- o Iterate until no more possible merging or until stopping criterion is satisfied, e.g., a minimum number of regions has been reached.
- o Successive Iterations can be represented by a tree structure where {Root: Complete Image; Leaves: Individual Pixels; Branches: Relations between Regions and Subregions}

• Remarks:

- o Iterative Region Splitting
 - Reverse process starting with entire image as one region
- o Split and Merge
 - Iterative Succession of splitting and growing regions based on separate criteria for splitting and merging


Region-Based Segmentation Road Following Results


Region-Based Segmentation Landsat Thematic Mapper Segmentation (James Tilton/NASA GSFC)



Combining Regions and Edges

Landsat Thematic Mapper Segmentation

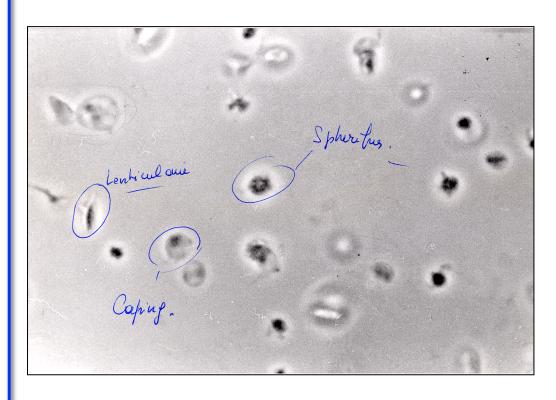
Introduction to Image Processing

02/20/08

Image Modeling and Understanding

Understanding Images

- A-Priori Knowledge
 - Domain Knowledge
 - o Medical
 - Radiology or Cytology, ... If Cytology: Blood Cells, Cancer Cells, ...
 - o Remote Sensing
 - Space Science or Earth Science. If Earth Science: Agriculture, Change Detection (e.g., forest monitoring), Invasive Species, ...
 - World Model or "Ground Truth"
- Based on "Low-Level and Intermediate-Level Processing"
 - o Pixel Classification, Image Features, Grouping of Image Features, ...
- "High-Level Processing": Image Understanding or Computer Vision/Artificial Intelligence Techniques
 - Decision Trees, Knowledge-Based Systems, Expert Systems, Intelligent Agents
 - o Object Recognition (e.g., Crater, Boulder, Rock Detection, ...)
 - o Region Labeling (e.g., Trees, Water, Road, Buildings, ...)
 - o 3D World Modeling (e.g., Pose Estimation for AR&D, ...)


Blood Platelets Classification

A-Priori Knowledge

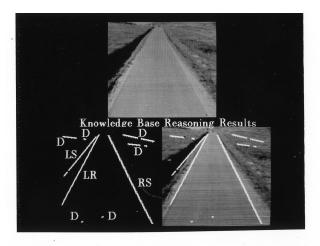
- Blood Platelets Recognition after Freezing
- Functional level related to Morphology and Texture

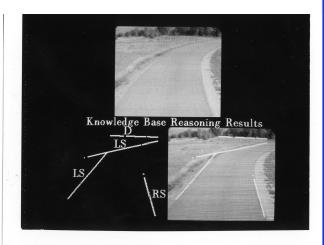
Image Understanding

Classification into 7 Classes based on geometric shapes, geometric and texture measurements,
 "Lenticular", "Lenticular with Pseudopods", "Circular", "Circular with Pseudopods", "Capping",
 "Aggregate", "Artefact"

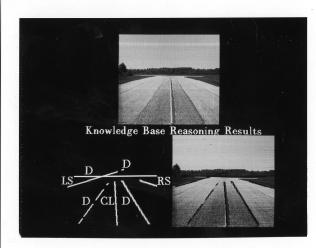
• Measurements:

- Perimeter
- Surface
- Minimal Distance from Gravity Center to Contour
- Maximal Distance from Gravity Center to Contour
- Circularity Measure
- Elongation Measures
- Classification by Decision
 Tree and Rule-Based System


Road Following


• A-Priori Knowledge


- Road Networks
- "Pencil of Lines" converging to a Vanishing Point


Image Understanding

- Classification of Lines into
 - "Left Road"
 - "Left Shoulder"
 - "Right Road"
 - "Right Shoulder"
 - "Center Road"
 - "Discarded"

Additional Reading

BOOKS:

- A. Rosenfeld and A.C. Kak, "Digital Image Processing," Academic Press, 1982.
- D.A. Forsyth and J. Ponce, "Computer Vision: A Modern Approach," Prentice Hall, 2003.
- R.O. Duda and P.E. Hart, "Pattern Classification and Scene Analysis," John Wiley & Sons, 1973.
- B. Jähne, "Digital Image Processing: Concepts, Algorithms and Scientific Applications," Springer-Verlag, 1991.
- T.M. Lillesand and R.W. Kiefer, "Remote Sensing and Image Interpretation," John Wiley & Sons, Inc., 1987.
- J.G. Moik, "Digital Processing of Remotely Sensed Images," NASA Technical Report SP-431, 1980.
- P.H. Swain and S.M. Davis, "Remote Sensing: The Quantitative Approach," McGraw Hill, 1978.

ON LINE:

- http://www.umiacs.umd.edu/~ramani/cmsc426/index.html
- http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html
- http://www.dai.ed.ac.uk/CVonline/